中国海光

第14卷 第9期

相因子叠加法测量三维位移矢量

(10)

設用 2%(a, v) = [$f^{*}(a, q)$]², $\mathcal{I}(\pi, y)$ = [f(a, y)

陈明仪 华建文

(上海科技大学精密机械工程系)

提要:研究了物体的三维位移在傅里叶频谱面上引起的位相因子的变化。用全息二次曝光法记录此变化。提出一种测量漫射物体的三维位移矢量的新方法,避免 了用传统的、二次曝光全息法测量三维位移矢量中遇到的许多困难。实验结果与理 论分析得到很好的吻合。

Measurement of 3-D displacement vector using phase-comparison on Fourier transform plane

Chen Mingyi, Hua Jianwen

(Department of Fine Mechanical Engineering, Shanghai University of Science and Technology, Shanghai)

Abstract: Investigation of the phase change on Fourier transform plane caused by a moving object shows that it is possible to measure a 3-D displacement vector using comparison of the phase-change recorded on a double exposure hologram. Based on it, a novel approach for measuring a 3-D displacement vector is described here. Theoretical analysis shows that the problems usually appeare during interpreting the interferograms of a conventional double exposure hologram for 3-D displacement measurement have been effectively avoided. Experimental results are well coincident with theoretical analysis. Quantitative calculation method is also presented.

一、引言

言2.5亩血疗疗的免疫循.

验操作清度要求并不

用全息法对三维位移矢量的研究始自 1967 年 E. B. 阿历克赛德罗维奇^[13] 及 A. E. 爱诺斯^[23]等人。但在对所得的全息图读出时 均遇到了许多困难:或者需通过一张大全息 图选定物体的重现象上某一点作为观察点, 并在从一个观察点移到另一观察点的过程中 数出横越视场中的干涉条纹数;或者需要三 张全息图,并设法找到一个亮度不变的"零运动"点作为参考点来计算条纹数。实践表明, 这二种方法均因干涉条纹定域在重现的像附 近空间上,导致测量困难。尤其当物体作刚 体平动时,根本不存在"零运动点"。尔后的 许多工作^{(3,41}也未能根本地解决这些问题。 1983 年陈明仪等人^{[51}成功地实现了用记录 物体运动时引起的物空间频谱的附加位相因 子的方法测量物体面内速度。对该法的分析

收稿日期: 1986年8月4日。

表明,引伸此法可测量物体的三维位移矢量。 其好处是条纹定域在底片上。读出容易,简 化了测量过程,并有足够的测量精度。

二、原 理

利用如图 1 所示的全息记录装置,物 O 为一具有连续空间频谱 的漫 射体 (如 毛玻 璃),被置于透镜前任意位置。物体由方向矢 量为 m 的平行激光束照明。感光乳胶片 田 置于透镜 L 的后焦面上。参考光束为·R。设 物体位移前、后由物波在记录平面 H 上引起 的复振幅分布分别为 D₁(ζ, η)和 D₂(ζ, η)。 图 2 为装置的座标系统。现物体作三维平动, 其位移矢量为:

 $\Delta r = (\Delta x, \Delta y, \Delta z)_{\circ}$

令位移前物体上某点 P, 散射到 H 平面上 Q 点(ζ, η)处的光线 b 所产生的复振幅为:

 $d_i(\zeta, \eta),$

若 P_i 点位移至 P'_i 点,其散射的光线 b' 也到 达 Q 点(ζ , η)处。因此由图 2 知,它产生的 复振幅为:

 $d_i(\zeta, \eta) \exp[jk\Delta r \cdot (l-m)]$ (1) 式中 $k = \frac{2\pi}{\lambda}$ 为波矢; l 为单位矢量, 其方向 平行光线 b 和 b',起点在透镜中心上。有

 $\boldsymbol{l} = \left[\frac{\zeta}{\sqrt{\zeta^{2} + \eta^{2} + f^{2}}}, \frac{\eta}{\sqrt{\zeta^{2} + \eta^{2} + f^{2}}}, \frac{f}{\sqrt{\zeta^{2} + \eta^{2} + f^{2}}}\right]$ (2)

显见,物 O 为点 P_i 的集合,所以有 $D_1(\zeta, \eta) = \sum_i d_i(\zeta, \eta),$

并据式(1)由 派-政 如如今,200=4 头的风

 $D_2(\zeta, \eta) = D_1(\zeta, \eta) \cdot \exp[jk\Delta r \cdot (l-m)]$ 一般说, 式中 $D_1(\zeta, \eta)$ 即为物 O 的含有附加 畸变位相因子的空间频谱⁶³。经二次曝光, 并 经线性处理后的全息片, 用单色光照明, 则透 过全息片的正一级衍射的光强为

 $I \propto |D_1(\zeta, \eta) + D_2(\zeta, \eta)|^2 \propto 2 |D_1(\zeta, \eta)|^2$

×{1+cos[*k***4r**•(*l*-**m**)]}, (3) 呈现出光强按余弦变化的干涉图样。若考察 点为亮点,则有

 $k\Delta r \cdot (l-m) = N \cdot 2\pi,$ (4) 式中 $k\Delta r \cdot (l-m)$ 则为由物体三维位移产生的位相因子。

由式(2)知, 取 *H* 面上的不同点 Q_i, 即 有不同的 l_i。改写式(4)可得线性方程组:

Δr·l_i=N_iλ+**Δr·m**, i=0, 1, 2, … (5) 作进一步简化可有

 $\Delta r (l_i - l_0) = \Delta N_{i0} \lambda, i = 0, 1, 2, ...$ (6) 式中 $\Delta N_{i0} = N_i - N_0,$ (7) 为第 i 点到 0 点之间的干涉条 纹 数。 N_0 为 i = 0 的一点对应的干涉条纹 的级 次。 以式 (2)代入式(6)得

由上式知,欲解得 Δr (Δx , Δy , Δz) 需取六个 点($\delta = 0 \sim 5$)。这样的方法不仅失之繁复,也 因常用的全息片尺寸不大,如9×12 cm,很难 测准。

若选用光轴为1。方向矢量,即把光轴与

. 541 .

H 面的交点设为座标原点,计算便可简化。 即仅需取四个不共线的点(*i*=0~3),由式 (8)求解得 Δ*r*。

三、实验结果及讨论

以波长 λ=632.8 nm 氦-氖气体激光器 为光源,毛玻璃为物体。记录透镜的焦距 f= 300 mm,记录介质为 6×9 cm 的天津感光片 厂生产的全息干板,置于透镜 L 的后焦平面 上。用二次曝光全息法记录物的三维位移矢 量 **Δr** 在与光轴夹角为:1.53°、8°、25°、45°、 60° 和 90° 时干涉条纹花样的变化。

毛玻璃安裝在三维精密工作台上,并置 于透镜的前方。基于物坐标系 X-Y 的方向 可以任意取定,为简便,只研究物体以 $x \ n z$ 向移动。显见, Δr 仍不失有一三维位移矢量 的特性。 x, z 向的位移由最小格值为 0.01 mm 的螺旋测微器提供。由于记录所得的为 象平面全息,干涉条纹直接呈现在干板上,故 可在底片上取点测量。按上所述,取四点,其 座标(ζ , η)分别取为(0, 0)、(0, 30)、(30, 0) 和(0, -30),单位 mm。代入式(2)便得 l_{0x} $l_{1x}l_{2}$ 和 l_{30} 用目视法读出条纹数 $\Delta N_{10x} \Delta N_{20}$ 和 ΔN_{300} 代入式(8)即可测得 Δr 值。物体 的实际位移量为 $\Delta x, \Delta y$ 和 $\Delta z,$ 测得值则为 $\Delta x^*, \Delta y^*$ 和 Δz^* 。测量结果列于表 1。图 3~

		it is a second second second		1 4 4 F F	a a a	1					
序	Δx	Ay	Δø	177	TOWNT	437	Ax*	Δy*	De*		
号	(单位:µm)			211,10	211 20	2110 30	(单位:µm)				
1	80	/**	3000	-26.5	-11	-20.5	79.5	/**	2996	1.53°	
2	140	1	996	-8	13.5	-8	137	1	1020	8°	
3	100	1-1	215	-1.3	14.3	-2.1	102	1	217	25°	
4	140	1	140	-1.1	20	(-1.i	134	1L	140	45°	
5	150	1	70	-0.3	23.3	0.8	152	1	70.1	60°	
6	150	1	0	0	23.1	0	147	1	0	90°	

表1 实验结果

表中 $\theta=$ tg⁻¹ $\frac{\Delta x}{\Lambda x}$ 仅作为参考。(Δx , Δy , Δz)为实际位移量,(Δx , Δy , Δz)*为实测值。

** 实验中 dy 和 dy* 未予测量和计算。

图 7 位移矢量 4r 与图 5 的同,物为反射漫射体 6 为一组由二次曝光所获得的全息干涉图 形 照片,各对应于表中序号为 1、2、3 和 6 实验 所得的干涉图形。

照片中出现的十字丝,其交点即为预置 在记录平面 *H* 上座标(ζ, η)系统的原点(0, 0)。表中所列的实验结果表明,本法具有足够的精度(约1~2%)。因此,采用在傅里叶频谱面上比较物体位移前后的位相因子变化的方法,可以实现对物体三维位移矢量的测量。还完全避免了传统方法所遇到的困难。

图 7 为物是一反射漫射体对所得的干涉 图形照片。实验参数与表中 3 同。可见,其 干涉图形也与图 5 的照片同,表明本法同样 适用于具有足够宽连续频谱的漫射物体。

必须指出,作为被测对象,不管形状如 何,也无论是透明体或反射体,以具有连续而 较宽阔的空间频谱为宜。 在测量方法上,除 记录用的光学系统在安排上略有不同外,并 无根本的区别。

参考文献

- E. B. Aleksindrov, A. M. Bonch-Bruevich; Sov. Phys. Tech. Phys., 1967, 12, 258.
- [2] A. E. Annos; J. Sci. Instrum., 1968, 1, 731.
- [3] C. A. Sciammarella, Gillbert; Appl. Opt., 1973, 12, 1951.
- [4] U. Kopf; Opt. Laser Technol., 1973, 5, 111.
 - [5] Ming-Yi Chen et al.; SPIE Proc., 1983, 416, 7.
 - [6] J. W. Goodman; Introduction to Fourier Optics, McGraw-hill, 1968.

偏差	轴		h the Andrew 径	(1100)(ges hun Si-photo-colla	向 「」向	切	L 前 A fi 词
r _a (mm)	d _e (nm)	h (nm)	d _e (nm)	h (nm)	trion of a large state	d_{e} (nm)	v _c
3	-0.003725	0	0	0	1	-0.002794	Risco _l
6	0	0	0.007451	0	1	0.007451	1
9	-0.003725	0	-0.003725	-0.001490	1	0.003725	1
12 Dox	-0.003725	0.005798	0.004657	0.000403	1	0.018627	1
12.5	+0.002794	ITAL ON LERE	0.007451	0.007224	可是可省	0.011176	1.1

表5 $n_a = n_w = n_f = 1.45$, $\lambda = 0$, $K = 10.75^\circ$

折光偏差。其实不然,从表4可以看出,当 r_a=11.6 mm时,偏差已达3.11 mm,而当 r_a=11.8 mm时,偏差增加到4.08 mm。如 再将 r_a增加为11.9 mm,此时光束自管内 壁射入被测 流体 与半径所成之角将大于 90°,甚至不能形成交点。

参考文献

 Boadway J.D., Karahan E.; DISA Information, 1981, No. 26.

[2] Bicen A. F.; TSI Quarterly, 1982, 8, Issue 2.

. 543 .